direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2xC23:2D6, C24:10D6, C6:2C22wrC2, (C2xD4):35D6, D6:12(C2xD4), (S3xC24):3C2, (C2xC12):9C23, (C22xD4):8S3, (C22xC4):29D6, (C22xC6):11D4, D6:C4:71C22, (C6xD4):55C22, (C22xS3):15D4, C23:7(C3:D4), (C22xC6):5C23, C23:4(C22xS3), (C2xC6).294C24, (C23xC6):12C22, (C2xDic3):3C23, C22.146(S3xD4), C6.141(C22xD4), (S3xC23):21C22, (C22xC12):43C22, C6.D4:60C22, C22.307(S3xC23), (C22xS3).238C23, (C22xDic3):32C22, (D4xC2xC6):15C2, (C2xC6):7(C2xD4), C3:3(C2xC22wrC2), C2.101(C2xS3xD4), (C2xD6:C4):41C2, (C2xC4):4(C22xS3), C22:4(C2xC3:D4), (C22xC3:D4):12C2, (C2xC3:D4):43C22, C2.14(C22xC3:D4), (C2xC6.D4):27C2, SmallGroup(192,1358)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2xC23:2D6
G = < a,b,c,d,e,f | a2=b2=c2=d2=e6=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=bd=db, fbf=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 1960 in 662 conjugacy classes, 143 normal (19 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, D4, C23, C23, C23, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xC6, C22:C4, C22xC4, C22xC4, C2xD4, C2xD4, C24, C24, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xS3, C22xC6, C22xC6, C22xC6, C2xC22:C4, C22wrC2, C22xD4, C22xD4, C25, D6:C4, C6.D4, C22xDic3, C2xC3:D4, C2xC3:D4, C22xC12, C6xD4, C6xD4, S3xC23, S3xC23, C23xC6, C2xC22wrC2, C2xD6:C4, C23:2D6, C2xC6.D4, C22xC3:D4, D4xC2xC6, S3xC24, C2xC23:2D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C3:D4, C22xS3, C22wrC2, C22xD4, S3xD4, C2xC3:D4, S3xC23, C2xC22wrC2, C23:2D6, C2xS3xD4, C22xC3:D4, C2xC23:2D6
(1 32)(2 33)(3 34)(4 35)(5 36)(6 31)(7 20)(8 21)(9 22)(10 23)(11 24)(12 19)(13 39)(14 40)(15 41)(16 42)(17 37)(18 38)(25 48)(26 43)(27 44)(28 45)(29 46)(30 47)
(1 48)(2 12)(3 44)(4 8)(5 46)(6 10)(7 16)(9 18)(11 14)(13 47)(15 43)(17 45)(19 33)(20 42)(21 35)(22 38)(23 31)(24 40)(25 32)(26 41)(27 34)(28 37)(29 36)(30 39)
(1 4)(2 5)(3 6)(7 47)(8 48)(9 43)(10 44)(11 45)(12 46)(13 16)(14 17)(15 18)(19 29)(20 30)(21 25)(22 26)(23 27)(24 28)(31 34)(32 35)(33 36)(37 40)(38 41)(39 42)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 13)(7 44)(8 45)(9 46)(10 47)(11 48)(12 43)(19 26)(20 27)(21 28)(22 29)(23 30)(24 25)(31 39)(32 40)(33 41)(34 42)(35 37)(36 38)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 16)(2 15)(3 14)(4 13)(5 18)(6 17)(7 45)(8 44)(9 43)(10 48)(11 47)(12 46)(19 29)(20 28)(21 27)(22 26)(23 25)(24 30)(31 37)(32 42)(33 41)(34 40)(35 39)(36 38)
G:=sub<Sym(48)| (1,32)(2,33)(3,34)(4,35)(5,36)(6,31)(7,20)(8,21)(9,22)(10,23)(11,24)(12,19)(13,39)(14,40)(15,41)(16,42)(17,37)(18,38)(25,48)(26,43)(27,44)(28,45)(29,46)(30,47), (1,48)(2,12)(3,44)(4,8)(5,46)(6,10)(7,16)(9,18)(11,14)(13,47)(15,43)(17,45)(19,33)(20,42)(21,35)(22,38)(23,31)(24,40)(25,32)(26,41)(27,34)(28,37)(29,36)(30,39), (1,4)(2,5)(3,6)(7,47)(8,48)(9,43)(10,44)(11,45)(12,46)(13,16)(14,17)(15,18)(19,29)(20,30)(21,25)(22,26)(23,27)(24,28)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42), (1,14)(2,15)(3,16)(4,17)(5,18)(6,13)(7,44)(8,45)(9,46)(10,47)(11,48)(12,43)(19,26)(20,27)(21,28)(22,29)(23,30)(24,25)(31,39)(32,40)(33,41)(34,42)(35,37)(36,38), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,16)(2,15)(3,14)(4,13)(5,18)(6,17)(7,45)(8,44)(9,43)(10,48)(11,47)(12,46)(19,29)(20,28)(21,27)(22,26)(23,25)(24,30)(31,37)(32,42)(33,41)(34,40)(35,39)(36,38)>;
G:=Group( (1,32)(2,33)(3,34)(4,35)(5,36)(6,31)(7,20)(8,21)(9,22)(10,23)(11,24)(12,19)(13,39)(14,40)(15,41)(16,42)(17,37)(18,38)(25,48)(26,43)(27,44)(28,45)(29,46)(30,47), (1,48)(2,12)(3,44)(4,8)(5,46)(6,10)(7,16)(9,18)(11,14)(13,47)(15,43)(17,45)(19,33)(20,42)(21,35)(22,38)(23,31)(24,40)(25,32)(26,41)(27,34)(28,37)(29,36)(30,39), (1,4)(2,5)(3,6)(7,47)(8,48)(9,43)(10,44)(11,45)(12,46)(13,16)(14,17)(15,18)(19,29)(20,30)(21,25)(22,26)(23,27)(24,28)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42), (1,14)(2,15)(3,16)(4,17)(5,18)(6,13)(7,44)(8,45)(9,46)(10,47)(11,48)(12,43)(19,26)(20,27)(21,28)(22,29)(23,30)(24,25)(31,39)(32,40)(33,41)(34,42)(35,37)(36,38), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,16)(2,15)(3,14)(4,13)(5,18)(6,17)(7,45)(8,44)(9,43)(10,48)(11,47)(12,46)(19,29)(20,28)(21,27)(22,26)(23,25)(24,30)(31,37)(32,42)(33,41)(34,40)(35,39)(36,38) );
G=PermutationGroup([[(1,32),(2,33),(3,34),(4,35),(5,36),(6,31),(7,20),(8,21),(9,22),(10,23),(11,24),(12,19),(13,39),(14,40),(15,41),(16,42),(17,37),(18,38),(25,48),(26,43),(27,44),(28,45),(29,46),(30,47)], [(1,48),(2,12),(3,44),(4,8),(5,46),(6,10),(7,16),(9,18),(11,14),(13,47),(15,43),(17,45),(19,33),(20,42),(21,35),(22,38),(23,31),(24,40),(25,32),(26,41),(27,34),(28,37),(29,36),(30,39)], [(1,4),(2,5),(3,6),(7,47),(8,48),(9,43),(10,44),(11,45),(12,46),(13,16),(14,17),(15,18),(19,29),(20,30),(21,25),(22,26),(23,27),(24,28),(31,34),(32,35),(33,36),(37,40),(38,41),(39,42)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,13),(7,44),(8,45),(9,46),(10,47),(11,48),(12,43),(19,26),(20,27),(21,28),(22,29),(23,30),(24,25),(31,39),(32,40),(33,41),(34,42),(35,37),(36,38)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,16),(2,15),(3,14),(4,13),(5,18),(6,17),(7,45),(8,44),(9,43),(10,48),(11,47),(12,46),(19,29),(20,28),(21,27),(22,26),(23,25),(24,30),(31,37),(32,42),(33,41),(34,40),(35,39),(36,38)]])
48 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | ··· | 2U | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | ··· | 6G | 6H | ··· | 6O | 12A | 12B | 12C | 12D |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | 12 | 12 | 12 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | ··· | 6 | 2 | 4 | 4 | 12 | 12 | 12 | 12 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D6 | D6 | D6 | C3:D4 | S3xD4 |
kernel | C2xC23:2D6 | C2xD6:C4 | C23:2D6 | C2xC6.D4 | C22xC3:D4 | D4xC2xC6 | S3xC24 | C22xD4 | C22xS3 | C22xC6 | C22xC4 | C2xD4 | C24 | C23 | C22 |
# reps | 1 | 2 | 8 | 1 | 2 | 1 | 1 | 1 | 8 | 4 | 1 | 4 | 2 | 8 | 4 |
Matrix representation of C2xC23:2D6 ►in GL5(F13)
12 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 11 | 9 |
0 | 0 | 0 | 4 | 2 |
1 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,12,0,0,0,0,0,0,11,4,0,0,0,9,2],[1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1],[12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,12,1],[1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,1,0] >;
C2xC23:2D6 in GAP, Magma, Sage, TeX
C_2\times C_2^3\rtimes_2D_6
% in TeX
G:=Group("C2xC2^3:2D6");
// GroupNames label
G:=SmallGroup(192,1358);
// by ID
G=gap.SmallGroup(192,1358);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,675,297,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^6=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations